EE 505
Lecture 6

Spectral Analysis in Spectre
- Standard transient analysis
- Strobe period transient analysis
Addressing Spectral Analysis Challenges

— Problem Awareness
— Windowing
— Post-processing



Review from Last Lecture

Distortton Analysis

AUAYRYAYAY

THEOREM: Consider a periodic signal with period T=1/f and sampling
period Tg=1/f5. If Ny is an integer, x(t) is band limited to f,,»x, and f>2f .,
then

\Am\zé\X(mNP+l)\ 0<m<h-I

and X(k) — (0 forall k not defined above

where <X(k)>11j__; is the DFT of the sequence <X(kTS )>§:_;

f 1
N=number of samples, N is the number of periods, and h = Int[ M$X N j
P

Np an integer means NP=N% IS an integer
Spectral components of interest are |A,,|, m=0....h-1
Key Theorem central to Spectral Analysis that is widely used !l and often “abused”



Review from Last Lecture

Considerations for Spectral
Characterization

*Tool Validation
FFT Length
sImportance of Satisfying Hypothesis

*\Windowing



Review from Last Lecture

Tool Validation (MATLAB)

Likely does not cause significant errors for existing data converter spectral
characterization applications

Likely can’t attribute unexpected results in a design
to MATLAB limitations for spectral characterization



Review from Last Lecture

Considerations for Spectral
Characterization

*Tool Validation
FFT Length
sImportance of Satisfying Hypothesis

*\Windowing



Review from Last Lecture _ _
Considerations for Spectral Characterization

FFT Length

* FFT Length does not significantly affect the computational noise floor

* Although not shown here yet, FFT length does reduce the quantization
noise floor coefficients

O"DFT

e - 2
If we assume EqanT is fixed EQuanT =, 2 Ay
k=2
If the A,’s are constant and equal EqQuANT = Ak 2nDFT/2
Solving for A, obtain A, ~ EQuANT
oNpFT/2

If input is full-scale sinusoid with only amplitude quantization with n-bit res,

£ ~ X1LSB _ XREF
QUANT = 2 \/§.2n+1




Review from Last Lecture _ _
Considerations for Spectral Characterization

FFT Length

_X1sB _ XREF
EQuANT = 2 _\/§.2n+1

Substituting for Eq syt Obtain

A, =~ "REF
\/5.2”"‘1 2nD|:T /2

This value for A, thus decreases with the length of the DFT window

Example: if n=16, nper=12 (4096 pt transform), and Xgee=1V,
then A ,=6.9E-8V (-143dB),

(Note A ,>> computational noise for all practical n, npey)



Review from Last Lecture

Considerations for Spectral
Characterization

* Tool Validation

 FFT Length

* Importance of Satisfying Hypothesis
- NP is an integer
- Band-limited excitation

* Windowing



Review from Last Lecture

Example

WLOG assume fg,;=50Hz
V, =sin(wt) +0.5sin(2wt)
w = 2nafy,,

Consider Np=20.2 N=4096

Recall  20log,,(0.5)=-6.0205999



Review from Last Lecture

Spectral

MagdB)

B0

-7

Response

Rect. Window N=4095 MNp =202

i Remember this is actually a stem plot il
but points are connected in plotting
program | | .
a0 100 150 200

Fregquency



Review from last lecture .o ¢ ¢ o o

Spectral Response (expressed in dB)

!
Rect. Window NF912 Np =20
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Spectral Response with Non-coherent Sampling
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Spectral Response
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Fundamental will appear at position 1+Np = 21
Columns 1 through 7

-35.0366 -35.0125 -34.9400 -34.8182 -34.6458 -34.4208 -34.1403
Columns 8 through 14
-33.8005 -33.3963 -32.9206 -32.3642 -31.7144 -30.9535 -30.0563

Columns 15 through 21

-28.9855 -27.6830 -26.0523 -23.9155 -20.8888 -15.8561| -0.5309

Columns 22 through 28
-12.8167 -20.1124 -24.2085 -27.1229 -29.4104 -31.2957 -32.8782
Columns 29 through 35

-34.1902 -35.2163 -35.9043 -36.1838 -35.9965 -35.3255 -34.1946

Note there is a dramatic increase in the noise floor and a
significant change in and spreading of the fundamental!!



kth harmonic will appear at position 1+ksNp

Columns 36 through 42

-32.6350 -30.6397 -28.1125 -24.7689 -19.7626 | -8.5639 +11.7825

Columns 43 through 49
-20.0158 -23.9648 -26.5412 -28.4370 -29.9279 -31.1519 -32.1874
Columns 50 through 56
-33.0833 -33.8720 -34.5759 -35.2113 -35.7902 -36.3218 -36.8133
Columns 57 through 63
-37.2703 -37.6974 -38.0984 -38.4762 -38.8336 -39.1725 -39.4949
Columns 64 through 70

-39.8024 -40.0963 -40.3778 -40.6479 -40.9076 -41.1576 -41.3987



kth harmonic will appear at position 1+ksNp

Columns 36 through 42

-32.6350 -30.6397 -28.1125 -24.7689 -19.7626 | -8.5639 +11.7825

Columns 43 through 49
-20.0158 -23.9648 -26.5412 -28.4370 -29.9279 -31.1519 -32.1874
Columns 50 through 56
-33.0833 -33.8720 -34.5759 -35.2113 -35.7902 -36.3218 -36.8133

Columns 57 through 63

-37.2703 -37.6974 -38.0984 -38.4762 -38.8336 |-39.1725 -39.4949

Columns 64 through 70

-39.8024 -40.0963 -40.3778 -40.6479 -40.9076 -41.1576 -41.3987



Observations

* Modest change in sampling window of 0.2
out of 20 periods (1%) results in a big error
in both fundamental and harmonic

* More importantly, dramatic raise in the

“noise floor” !!! (from over -300dB to only -
12dB)



Example

WLOG assume fg,;=50Hz
V, =sin(wt) +0.5sin(2wt)
w = 2nafy,,

Consider Nz=20.01 N=4096

Deviation from hypothesis is .05% of the sampling window
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Input Waveform
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Spectral Response with Non-Coherent Sampling

Rect. Window M=4080 Mp =20.01
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Fundamental will appear at position 1+Np = 21

Columns 1 through 7
-89.8679 -83.0583 -77.7239
Columns 8 through 14
-66.2037 -64.7240 -63.3167
Columns 15 through 21
-56.0866 -54.2966 -52.2035
Columns 22 through 28
-40.0162 -46.2516 -50.0399
Columns 29 through 35

-62.2078 -65.1175 -69.1845

-74.2607

-61.9435

-49.6015

-52.8973

-76.9560

-71.6830

-60.5707

-46.0326

-55.3185

-81.1539

-69.5948

-59.1642

-40.0441

-57.5543

-69.6230

-67.8044

-57.6859

-0.0007

-59.7864

-64.0636



kth harmonic will appear at position 1+ksNp

Columns 36 through 42

-59.9172 -56.1859 -52.3380 -47.7624 -40.9389

-6.0401

-39.2033



Observations

* Modest change in sampling window of
0.01 out of 20 periods (.05%) still results in
a modest error in both fundamental and
harmonic

* More importantly, substantial raise in the
computational noise floor !!! (from over -
300dB to only -40dB)

 Errors at about the 6-bit level !



Example

WLOG assume fg,;=50Hz
V, =sin(wt) +0.5sin(2wt)
w = 2nafy,,

Consider Np=20.001 N=4096

Deviation from hypothesis is .005% of the sampling window



Spectral Response with Non-coherent Sampling
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Fundamental will appear at position 1+Np = 21

Columns 1 through 7

-112.2531 -103.4507 -97.8283 -94.3021 -91.7015 -89.6024 -87.8059
Columns 8 through 14

-86.2014 -84.7190 -83.3097 -81.9349 -80.5605 -79.1526 -77.6726

Columns 15 through 21

-76.0714 -74.2787 -72.1818 -69.5735 -65.9919 -59.9650 | 0.0001

Columns 22 through 28
-60.0947 -66.2917 -70.0681 -72.9207 -75.3402 -77.5767 -79.8121
Columns 29 through 35

-82.2405 -85.1651 -89.2710 -97.2462 -101.0487 -89.5195 -83.9851



kth harmonic will appear at position 1+ksNp

Columns 36 through 42

-79.8472 -76.1160 -72.2601 -67.6621 -60.7642 -6.0220 -59.3448

Columns 43 through 49
-64.8177 -67.8520 -69.9156 -71.4625 -72.6918 -73.7078 -74.5718
Columns 50 through 56
-75.3225 -75.9857 -76.5796 -77.1173 -77.6087 -78.0613 -78.4809

Columns 57 through 63

-78.8721 -79.2387 -79.5837 -79.9096|-80.2186| -80.5125 -80.7927




Observations

* Modest change in sampling window of
0.01 out of 20 periods (.005%) results in a
small error in both fundamental and
harmonic

* More importantly, substantial raise in the
computational noise floor !!! (from over -
300dB to only -60dB)

 Errors at about the 10-bit level !



Spectral Response with Non-coherent sampling
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Fundamental will appear at position 1+Np = 21

Columns 1 through 7

-130.4427 -123.1634 -117.7467 -114.2649 -111.6804 -109.5888 -107.7965
Columns 8 through 14

-106.1944 -104.7137 -103.3055 -101.9314 -100.5575 -99.1499 -97.6702

Columns 15 through 21

-96.0691 -94.2764 -92.1793 -89.5706 -85.9878 -79.9571 | 0.0000

Columns 22 through 28
-80.1027 -86.2959 -90.0712 -92.9232 -95.3425 -97.5788 -99.8141
Columns 29 through 35

-102.2424 -105.1665 -109.2693 -117.2013 -120.8396 -109.4934 -103.9724



kth harmonic will appear at position 1+ksNp

Columns 36 through 42
-99.8382 -96.1082 -92.2521
Columns 43 through 49
-84.8247 -87.8566 -89.9190
Columns 50 through 56
-95.3241 -95.9872 -96.5810
Columns 57 through 63
-98.8732 -99.2398 -99.5847

Columns 64 through 70

-87.6522

-80.7470

-6.0207 | -79.3595

-91.4652 -92.6940 -93.7098 -94.5736

-97.1187 -97.6100 -98.0625 -98.4821

-99.9107

-100.2197

-100.5135 -100.7937



Observations

* Modest change in sampling window of
0.001 out of 20 periods (.0005%) results in
a small error in both fundamental and
harmonic

* More importantly, substantial raise in the
computational noise floor !!! (from over -
300dB to only -80dB)

 Errors at about the 13-bit level !



Considerations for Spectral
Characterization

* Tool Validation
 FFT Length

* Importance of Satisfying Hypothesis
- NP is an integer
- Band-limited excitation

* Windowing



\
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Stay Safe and Stay Healthy !




FFT Examples

Recall the theorem that provided for the relationship between the
DFT terms and the Fourier Series Coefficients required

1. The sampling window be an integral number of periods

——> 2. N > 2fmax NP

fSIGNAL



Example

If f5,=50Hz

and Np=20 N=512
N

fSAMP — fSIG N_

foarp=1280 Hz

N > 2 N, > f

fSIGNAL

< 640Hz

m



Example

Consider N,=20 N=512
If f5,=50Hz

Vi =Sin(mt)+ 0.5sin(2mt) + 0.5 sin(14wt)

w = 2nafy,,

(i.e. a component at 700 Hz which violates the
band limit requirement)

Recall  20log,,(0.5)=-6.0205999



Effects of High-Frequency Spectral Components
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Effects of High-Frequency Spectral Components
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Effects of High-Frequency Spectral Components
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Effects of High-Frequency Spectral Components

Columns 1 through 7

-296.9507 -311.9710 -302.4715 -302.1545 -310.8392 -304.5465 -293.9310
Columns 8 through 14
-299.0778 -292.3045 -297.0529 -301.4639 -297.3332 -309.6947 -308.2308

Columns 15 through 21

-297.3710 -316.5113 -293.5661 -294.4045 -293.6881 -292.6872 |-0.0000

Columns 22 through 28
-301.6889 -288.4812 -292.5621 -292.5853 -294.1383 -296.4034 -289.5216
Columns 29 through 35

-285.9204 -292.1676 -289.0633 -292.1318 -290.6342 -293.2538 -296.8434



Effects of High-Frequency Spectral Components
frign=14f0

Columns 36 through 42

-301.7087 -307.2119 -295.1726 -303.4403 -301.6427 | -6.0206 |-295.3018

Columns 43 through 49
-298.9215 -309.4829 -306.7363 -293.0808 -300.0882 -306.5530 -302.9962
Columns 50 through 56

-318.4706 -294.8956 -304.4663 -300.8919 -298.7732 -301.2474 -293.3188



Effects of High-Frequency Spectral Components

Aliased components at f — —f

alias sample

f

alias

=1280-700 = 580Hz

thus positioninsequence =1+ Nfali =1+ 512% =233

sample

Columns 225 through 231
-296.8883 -292.8175 -295.8882 -286.7494 -300.3477 -284.4253 -282.7639

Columns 232 through 238

-273.9840 | -6.0206 -274.2295 -284.4608 -283.5228 -297.6724 -291.7545

Columns 239 through 245
-299.1299 -305.8361 -295.1772 -295.1670 -300.2698 -293.6406 -304.2886
Columns 246 through 252

-302.0233 -306.6100 -297.7242 -305.4513 -300.4242 -298.1795 -299.0956



alias

Alias frequency and Index Position

(

f (no alis)
qample — 1
T mpe + 1
2 e — T
28 pie T
3, —f

O0<f<

sample

f
sample < f < f

2 sample
3

fsample < f <3 fsample
3
5 fsample < f < 2fsample

5

2fsample < f < E fsample
5
—1 <f <3f coeo

sample sample

Index position in sequence::1+htjﬂ%—

sample



Alias frequency and Index Position

fALIAS

Index position in sequence:1+N—fa"as

sample



Alias frequency and Index Position

DFT
Index A (fs=fsample)
1+E—— .
2 L)
0 M |
13 f, 3
2

Index position in sequence:1+N—]c alias

sample



Effects of High-Frequency Spectral Components
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Effects of High-Frequency Spectral Components
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Effects of High-Frequency Spectral Components

Rect. Window N=512 Np =20
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Effects of High-Frequency Spectral Components

Rect. Window M=512 Np =20
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Effects of High-Frequency Spectral Components

Fect. Window N=512 ~p =20
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-100 .

-150 | .

hag(dB)

-200 .

250 .

-300

] ] ] 1 ] ]
0 200 400 BO0 800 1000 1200
Freguency



Observations

Aliasing will occur if the band-limited part of the
hypothesis for using the DFT is not satisfied

Modest aliasing will cause high frequency
components that may or may not appear at a
harmonic frequency

More egregious aliasing can introduce
components near or on top of fundamental and
lower-order harmonics

Important to avoid aliasing if the DFT is used for
spectral characterization



Quirks with Circuit Simulators

The transient simulation results obtained with almost all circuit simulators
are almost always wrong!

Vour(t)
Linear or Nonlinear

V|N(t) i Circuit

N
If V =V,sin(wt), the probability that any output for any linear or nonlinear
circuit is the correct value is likely O

The suppliers of all commercial circuit simulators know that their simulators
almost never provide the correct solution for transient analysis in even simple

circuits

But the solutions provided are often very good approximations to the actual
solution



Quirks with Circuit Simulators

Vour(t)

—+ Linear or Nonlinear
VlN(t) — Circuit

N

Obtaining an exact result for a transient simulation is an extremely challenging
problem and even obtaining very good results have required major efforts by the
CAD community for many decades

It is highly unlikely that the goal of any CAD tool vendor is to provide the exact
transient solution

So what is likely the goal of a CAD tool vendor when developing tools to provide
the transient response of a circuit?

Conjecture: To provide solutions that are good enough to convince customers
to spend money to use the simulator !

Is this a good goal that well-serves the customer?



Quirks with Circuit Simulators

OouT

xIN—><ADC —~<— Xout

n

There are numerous quirks that become issues when simulating ADCs
of DACs , particularly when the specifications are demanding

Will discuss one of these quirks associated with spectral characterization today



Quirks with Circuit Simulators

Time steps in transient simulations

A VOUT

t]_ t2 t3 o0 o tk o 00

Transient analysis in SPICE involves breaking the simulation time interval
into short sub-intervals of length fk =t.,,-t
+

The solution involves using the calculated output at time t, as the input at time t, , ,

The time steps are intentionally not uniform to provide reasonable tradeoffs
between simulation time and accuracy



Quirks with Circuit Simulators

Transient Simulation Approach in Simulators

Linear or Nonlinear Linear or Nonlinear
Circuit VOUT(tk+1) Circuit VOUT(tk+2)
VlN(tk) Initial Conditions: VIN(tk+1) Initial Conditions:
000 e el 000

[XLC (t)} is the vector of the instantaneous value of all capacitor voltages and all
inductor currents
» Transient simulations are decomposed into a sequence of individual problems
where the output of all energy storage elements at step k serves as the initial
condition (not initial guess) of all energy storage elements at step k+1

« Simulator attempts to conserve charge in each simulation step. This is a key
concept that must be incorporated for consistency in any circuit simulator when Ls
and Cs are included in schematic.



Quirks with Circuit Simulators

Transient Simulation Approach in Simulators

Linear or Nonlinear Linear or Nonlinear
Circuit VOUT(tk+1) Circuit VOUT(tk+2)
VIN(tk) Initial Conditions: VIN(tk+1) Initial Conditions:
000 e el 000

Simulator attempts to conserve charge in each simulation step (KCL and KVL)

Basic physical principle that is integral to any transient simulation of circuits with
energy storage elements: CHARGE IS CONSERVED !

Is charge conserved in a circuit simulator when doing transient simulations?

No ! Itis only conserved locally (in individual time intervals) so major divergence
can occur in some extreme situations due to accumulative round off effects



Quirks with Circuit Simulators

Transient Simulation For Spectral Characterization

Vour(tisa)
Vour(ti-1)

{ >
tia ty thaa

Normal time-stepping algorithm is used to obtain transient response
VOUT
A

Vour(ti)

VOUT(tk+1)

Vour(ti.

l J i 1 >
t t
m tk—l k k+1
- |
TSAI\/I [

DFT requires output at precisely uniformly spaced predetermined points, t,t. .4...

t

These points are almost never coincident with the time-stepping points !



Quirks with Circuit Simulators

Transient Simulation For Spectral Characterization

V
Alout

Vour(te)

T i I >
t
tm b t T+t kl
- >
TSAI\/I P

So how does the simulator generate outputs at the required time points ?

It interpolates ! Exact interpolation algorithm may vary from vendor to vendor

VOUT(tm+1)

Vv
AlouT

Vour(ti)

TSAMP

For linear interpolation  Vour (tn) = Vour (te) +[ Vour (ter) = Vour (t) ]

t . —t,

m+1

tk+1 o tk



Quirks with Circuit Simulators

Transient Simulation For Spectral Characterization

VOUT(tm+1)

\Y
A ouT

Vour(te)

Vour(tis1)

VOUT(tkf

I ! I >
toq Ukl L tie1
< >
TSAIVIP
t ., —t
For linear interpolation Vour (tn) =Vour (t )+ Vour (te) = Vour (t )]—tm” — tk
k+1 k

What errors are introduced in determining Vg 1(t,)?

« Errors in calculating V1 (t)
(most problematic for long simulations with multiple energy storage elements)

(may not be particularly problematic for spectral characterization since Ny often not too long)

(must simulate long enough for natural response to die out if ALL initial conditions are not
correctly set)

» Errors associated with interpolation V(1)



Quirks with Circuit Simulators

If interpolation is a problem, what can be done about it

For linear interpolation
t . —t >
VOUT (tm) = VOUT (tk ) + I:VOUT (tk+1 ) - VOUT (tk )i| % tm; ti b iﬂ L
k+1 k

TSAMP

» specify the sample points where you want output?

TSAMP

| | | | = = ol No — it will ignore such request

specify a very small maximum step size May help but maybe not enough. long sim

I - i | ||t times, possibly convergence problems

« modify time stepping algorithm to include desired sample points

Tsamp
-

AR HE May help a lot! Use Strobe Period function if

available in simulator

» Add noninteracting waveform with steep slope at desired transition points

May also help a lot! Forces some time
stepping algorithms to take sample near
sample points



Quirks with Circuit Simulators

If interpolation is a problem, what can be done about it

« Add noninteracting waveform with steep slope at desired transition points

TSAI\/I P




Quirks with Circuit Simulators

Transient Simulation For Spectral Characterization

\Y
A ouT

TSAMP

Errors associated with interpolation Vg 1(ty)

Will consider example using Spectre

Do not know what the interpolation algorithm is

Will not include any energy storage elements



Spectre Limitations in Spectral Analysis

Thanks to Xilu Wang for simulation results

 Normal Transient Analysis
* Strobe Period Timing

* Coherent Sampling



Simulation Conditions

———

V(t)=sin(2*1*50t)
11 periods —
Coherent Sampling

—

Number of Samples:
« 512
« 4096

Type of Samples:
« Standard Sweep
« Strobe Period Sweep



512 Samples with Standard Sweep

V(t)=sin(2*T*50t)
11 periods —
Coherent Sampling

—




For reference: Results obtained with MatLab for N=512
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512 Samples with Standard Sweep
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512 Samples with Standard Sweep

Byytl =
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512 Samples with Standard Sweep

Columns 45 through
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512 Samples with Standard Sweep

Rect. Window N=512 Np=11
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* Note dramatic increase in noise floor
» Note what appear to be some harmonic terms extending above noise floor



MatLab comparison: 512 Samples with Standard Sweep
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512 Samples with Standard Sweep

Rect. Window N=512 Np =11
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512 Samples with Standard Sweep

Rect. Window N=512 Np =11
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Note presence of odd harmonics in spectrum



512 Samples with Standard Sweep
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512 Samples with Strobe Period Sweep

V(t)=sin(2*T*50t)
11 periods —
Coherent Sampling

—




512 Samples with Strobe Period
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512 Samples with Strobe Period
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512 Samples with Strobe Period

Byyt2 =

Columns 1 through 12

-289.8823 -277.1621

Column=s 13 through
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512 Samples with Strobe Period
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MatLab comparison: 512 Samples with Strobe Period Sweep
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512 Samples with Strobe Period

Rect. Window N=512 Np =11
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512 Samples with Strobe Period
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4096 Samples with Standard Sweep

V(t)=sin(2*T*50t)
11 periods —
Coherent Sampling

J




For reference: Results obtained with MatLab for N=4096
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4096 Samples with Standard Sweep
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4096 Samples with Standard Sweep

N=4096 Np =11
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Byyt3 =

4096 Samples with Standard Sweep

Column= 1 through 12
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4096 Samples with Standard Sweep

Rect. Window N=4096 Np =11
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Comparison 4096 Samples with Standard Sweep
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4096 Samples with Standard Sweep

Rect. Window N=4096 Np =11
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4096 Samples with Standard Sweep
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Note presence of odd harmonics in spectrum



4096 Samples with Standard Sweep
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4096 Samples with Strobe Period Sweep

V(t)=sin(2*T*50t)
11 periods —
Coherent Sampling

J
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4096 Samples with Strobe Period
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4096 Samples with Strobe Period

Byvtg =

Column= 1 through 12
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4096 Samples with Strobe Period

Rect. Window N=4096 Np =11
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Comparison 4096 Samples with Strobe Period Sweep
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4096 Samples with Strobe Period
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4096 Samples with Strobe Period
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Superimposed Standard/Strobe Sweep

N=512 Np =11
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Superimposed Standard/Strobe Sweep

N=512 Np =11
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Difference Standard/Strobe Sweep
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Difference Standard/Strobe Sweep
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Difference Standard/Strobe Sweep

« 1074 N=4096 Np =11

Mag (volts)

0 500 1000 1500 2000 2500 23000 2 3500 4000 0 4500
Frequency




Difference Standard/Strobe Sweep

w1074 N=4096 Np =11
| |
i |
st AR
:‘E A Nb
S 2[
=
o 1r T
©
= 0
“Ar
Py I f IH |
ol | I | |
0 50 100 150 200 250
Time

(index)



Addressing Spectral Analysis
Challenges

* Problem Awareness
* Windowing and Filtering
* Post-processing



Problem Awareness

THEOREM: Consider a perio_dic signal with period T=1/f and sampling
period Tg=1/f5. If Np is an integer, x(t) is band limited to f,,»x, and f>2f __.,
then

\Am\:%\X(mNPH)( 0<m<h-1

and X(k) = for all k not defined above

N-1

where <X(k)>k:() is the DFT of the sequence <X(kTS )>E:_;

N=number of samples, N; is the number of periods, and h = Int(fm?x _l\: j
P

Hypothesis is critical

Even minor violation of the premise can have dramatic effects
Validation of all tools is essential

Learn what to expect



Filtering - a strategy to address the aliasing problem

» Alowpass filter is often used to enforce the band-limited
requirement if not naturally band limited

« Lowpass filter often passive
» Lowpass filter design often not too difficult

«  Minimum sampling frequency often termed the Nyquist rate.
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